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ABSTRACT: Molecular programming allows for the bottom-up
engineering of biochemical reaction networks in a controlled in vitro
setting. These engineered biochemical reaction networks yield
important insight in the design principles of biological systems and
can potentially enrich molecular diagnostic systems. The DNA
polymerase−nickase−exonuclease (PEN) toolbox has recently been
used to program oscillatory and bistable biochemical networks using
a minimal number of components. Previous work has reported the
automatic construction of in silico descriptions of biochemical
networks derived from the PEN toolbox, paving the way for
generating networks of arbitrary size and complexity in vitro. Here,
we report an automated approach that further bridges the gap between an in silico description and in vitro realization. A
biochemical network of arbitrary complexity can be globally screened for parameter values that display the desired function and
combining this approach with robustness analysis further increases the chance of successful in vitro implementation. Moreover,
we present an automated design procedure for generating optimal DNA sequences, exhibiting key characteristics deduced from
the in silico analysis. Our in silico method has been tested on a previously reported network, the Oligator, and has also been
applied to the design of a reaction network capable of displaying adaptation in one of its components. Finally, we experimentally
characterize unproductive sequestration of the exonuclease to phosphorothioate protected ssDNA strands. The strong
nonlinearities in the degradation of active components caused by this unintended cross-coupling are shown computationally to
have a positive effect on adaptation quality.
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Biological systems are hierarchically organized networks in
which each level displays internalized self-regulation while

coupled to the external environment.1 Specifically, interactions
between the hierarchical layers are a key feature of the reaction
networks underlying replication, protein production, energy
metabolism, and organelle control.2 Attempts to unravel the
hierarchy and the exact mechanisms governing such biological
processes can roughly be classified as top-down or bottom-up
approaches.3 The former tries to infer full biological networks
in their natural context qualitatively at the expense of accuracy,
while the latter aims at describing and understanding
components of smaller size quantitatively at the expense of
system complexity.4,5 The sophisticated character of biological
systems is to a great extent regulated through complex
biochemical reactions networks (CRNs). The molecular
components of such reaction networks interact in a dynamic
manner to sense, to respond and to adapt to external signals,
for example, via signaling cascades.6 Recently, the programm-
ability of CRNs has been demonstrated with genetic engineer-

ing of bacterial colonies.7−9 However, engineering these CRNs
in a cellular environment leads to cross-talk with the host
housekeeping functions that is not always trivial to circumvent;
therefore, the study of minimal biological systems in an isolated
or in vitro fashion is an ongoing area of research.10,11

Employing a bottom-up approach to synthetic biology of
minimal systems in an in vitro setting enables study of CRNs in
a modular fashion. DNA-based CRNs have proven to be highly
programmable and amenable for such bottom-up design
strategies.12,13 Moreover, isolation of the molecular machinery
for DNA replication and transcription−translation machinery
in a test tube,14,15 followed by compartmentalization of these
processes in droplets and liposomes, has opened the door
toward functional artificial cells.16 Harnessing the dissipative
transcription−translation machinery in an open system
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(CSTR) enabled the programmable construction of an in vitro
oscillating CRN in a defined environment.17 The dynamics of
such systems can be further tuned by considering shared
resource usage and negative autoregulation to match output
and demand.18,19 Establishing predefined dynamic behaviors
has also been achieved with enzymatically enriched RNA and
DNA-based biochemical reactions based on transcription and
replication.20,21 Recent work has revealed that interconnecting
DNA templates (or genelets) with RNA transcripts as
dynamical species can yield switches,22,23 oscillators,24,25 and
adaptation.26 The successful compartmentalization of these
dissipative biochemical reaction networks in water-in-oil
microdroplets is further paving the way toward the design of
artificial cells capable of molecular communication with living
cells or other protocells.27−29 Networks that are based on DNA
replication, nicking, and degradation (i.e., the PEN toolbox) can
show stable oscillations,30 multistability,31 traveling waves,32,33

symbiosis, and chaotic dynamics,34 further demonstrating the
bottom-up programmability of fundamentally different types of
network topologies. Indeed, the reactions of this PEN toolbox
are computationally35 and experimentally well characterized,36

making the toolbox an excellent choice to study and design new
types of network topologies and their associated dynamics.
Here, we focus on systematic bottom-up design of CRNs

employing the PEN toolbox. We report the automated design
of biochemical networks constructed from the PEN toolbox
displaying predefined dynamics. Specifically, an in silico
approach is presented in which the multidimensional parameter
space of dynamical models representing two key network
motifs is explored, resulting in parameter regions in which the
molecular circuits show either sustained oscillations or
adaptation.37−40 Next, the robustness to perturbations in the
parameters of each circuit is assessed. By selecting the most
robust parameter set, the chance of successful in vitro
implementation is further increased. The information that is
obtained from this computational analysis is subsequently used
to automatically design optimal DNA sequences having
hybridization energies that closely adhere to the design criteria
as obtained from the robustness analysis. We perform this
procedure on a network topology capable of oscillatory
dynamics (the Oligator30) and on a PEN implementation of
a type-1 incoherent feedforward loop (IFFL),41 which is shown

Figure 1. Bottom-up engineering of in vitro biochemical reaction networks using the polymerase−exonuclease−nickase (PEN) toolbox. (A)
Activation of a protected template: oligomer α binds to its complementary part α̅ on template T. DNA polymerase then extends the primed template
with sequence X complementary to X̅ resulting in fully hybridized dsDNA. Oligomer α contains a nicking enzyme recognition site. Because the
temperature is close to the melting temperature of the primer−template complex, nicking of the fully hybridized dsDNA results in two oligomers α
and X that can readily dissociate from the template. Depending on the choice of the sequence of oligomer X, the template can function as an
autocatalytic node, that is, X = α, a delay node, that is, X = β or an inhibitory node, that is, X = inh. The yellow dots on the template strands indicate
a phosphorothioate modified backbone at the 5′ end, protecting the template from degradation by exonuclease. (B) Inhibition of a template: an
inhibitory oligomer inh binds strongly to a template, rendering it inactive. Enzymes cannot act on the inactive template, as the nicking enzyme
recognition site is not fully displayed, and a two base mismatch at the 3′ end prevents DNA polymerase from extending oligomer inh. (C) Short-
range activation combined with delayed inhibition is a common design motif to construct oscillatory biochemical circuits.17,24,30,42 (D) The negative
feedback loop with a buffer node (NFBLB) and the incoherent feedforward loop with a proportioner node (IFFLP) can display adaptation.40 The
network topologies presented in C and D can be constructed using the PEN toolbox by considering the nodes as active species in templates.
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to display adaptation.40 Finally, we reveal and characterize a
previously unexplored reaction in the degradation kinetics of
the components caused by unproductive sequestration of
exonuclease by phosphorothioate modified ssDNA strands.
Through simulation and mathematical analysis we demonstrate
that the additional load on the degradation machinery results in
an efficient amplification mechanism that increases the
sensitivity of the computed adaptive response and enhances
the robustness of the circuit under parametric uncertainty.

■ RESULTS AND DISCUSSION
Automated Design of Programmable PEN Toolbox

Networks. The PEN toolbox is based on two fundamental
types of reactions as building blocks, that is, activation (Figure
1A) and inhibition (Figure 1B). These reactions are triggered
by short ssDNA strands, which act as regulating signals on
longer ssDNA templates resulting in production of an output
signal. Activation of templates by short ssDNA input strands
enables DNA polymerase to extend the oligomer−template pair
resulting in fully hybridized dsDNA strands, which are
subsequently nicked resulting in double-stranded complexes
consisting of templates, input strands, and newly synthesized
output strands. Because reactions are performed at temper-
atures close to the melting temperature of the partial duplexes,
input and output strands readily dissociate from their templates.
Templates are inhibited by ssDNA strands that are
complementary to part of the template’s sequence but lack a
nickase recognition site. An inhibitor further possesses a two-
base mismatch at its 3′ end, preventing extension of the partial
duplex thus rendering the template strand inactive. Signal and
inhibition strands are degraded over time by exonucleases,
while each template strand is protected against degradation by
means of phosphorothioate modifications at its 5′ end. Figure
2A provides an overview of all types of reactions that occur in
the PEN toolbox with respect to a single DNA template T.
Because each template strand in a PEN derived CRN is
equivalent to a functional node in a network motif, the
regulation of a template’s activity by another template through
a signal ssDNA is equivalent to an edge in a network motif.
Using this approach, the PEN toolbox can be used as a versatile
tool to design network topologies capable of oscillatory (Figure
1C) or adaptive (Figure 1D) behavior. The temporal behavior
of such a system is described by ordinary differential equations
(ODEs) corresponding to the reactions. An arbitrary network
topology is implemented with the PEN toolbox by correctly
attributing the exact functionality of oligomers α, β, and inh
with respect to other templates.
The first two crucial steps of the in silico design approach

(Figure 2B) are selecting a network topology that is known to
display a specific dynamic behavior followed by generating the
set of ODEs. The set of ODEs is then used to guide circuit
design by characterizing the functional parameter space
corresponding to the desired behavior (Supporting Information
Text S1). This characterization is performed by randomly
generating key parameters of the system within certain ranges,
that is, the initial concentrations of DNA templates and trigger
strands (vide inf ra), and the hybridization dissociation
constants that are tunable via changes in the base sequence.
In this work, we have kept the Michaelis−Menten parameters
and concentrations of exonuclease, nickase, and polymerase
constant at previously determined literature values.31 Although
the concentrations of the three enzymes could be varied in
silico, an incomplete mechanistic understanding of the

isothermal amplification of partial duplexes by extension and
nicking precludes the formation of a detailed kinetic model.44

Therefore, the dissociation constants and the concentrations
are the model parameters that are translated to experimental
parameters.
Generally, the desired dynamic behavior is observed for a

subset of the sampled parameter sets, called viable sets. The
robustness of each of these viable sets is quantified in terms of a
robustness measure (Supporting Information Text S2),45,46 and
the set that exhibits the highest robustness is used as the target
set for the automated DNA strand design algorithm (vide
inf ra).
We demonstrate the methodology on a network motif that

has been previously shown to display oscillatory dynamics, the
Oligator, corresponding to the left topology in Figure 1C.30

Figure 2. In silico design of in vitro biochemical reaction networks
using the polymerase-exonuclease-nickase (PEN) toolbox. (A)
Reaction equations of the PEN toolbox. The forward rate constant
of hybridization ka is assumed to be sequence independent43 and fixed
at a previously determined value of 0.06 nM−1 min−1.31 The backward
rate constant of hybridization is expressed as the product of the
forward rate constant ka and the equilibrium dissociation constant Kd.
The forward rate constant of inhibitor binding to an occupied
template, α·T or T·β, via a toehold, kaTH

inh , is chosen equal to ka, because
the toehold length is 6 or 7 bases. The forward rate constants kaTH

α and
kaTH
β are lower, because they initiate strand displacement reactions via
shorter toeholds of 3 bases. See Supporting Information Text S1 for
details. Polymerase, nickase, and exonuclease activities are described
assuming Michaelis−Menten kinetics. (B) The in silico approach. First,
the ODEs for the network are derived, and subsequently, sampling all
dissociation constants Kd and relevant initial concentrations between
realistic values (e.g., 10 million randomly generated sets) is then used
to optimally cover the parameter space of the model. The Kd values
correspond to hybridization energies, ΔGAB° , that are matched by
choosing the correct base sequence (Supporting Information Text S2).
Responses of the network that meet certain criteria are accepted and
analyzed further. The corresponding parameter sets are subjected to
robustness analysis, and the parameter set that is characterized as most
robust is used as a target for the DNA sequence design algorithm.
Thermodynamic parameters obtained from the DNA sequence design
algorithm will slightly deviate from the optimal set found using
robustness analysis, and therefore, the network is simulated in silico
again to validate the response.
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Figure 3A depicts the reaction scheme of the Oligator.
Template T1 serves as an autocatalytic module that produces

oligomer α while reactions on template T2 result in a delay in
the activation of T3 via ssDNA oligomer β. The product of T3,
oligomer inh, in turn, inhibits the autocatalytic activity of T1.
Box plots corresponding to the functional parameter space
leading to an oscillatory response are depicted in Figure 3B,
and the sampling ranges are indicated by bars.47 Cross-
correlations between the sampled parameters are displayed in
Supporting Information Figure S2. From the box plots, it is
observed that the optimal concentration of template T2 is
significantly lower than of the optimal concentrations of
templates T1 and T3, suggesting that high concentrations of
template T2 tend to destroy oscillatory behavior. This trend is
supported by the original experiments30 and can be rationalized
by the fact that high concentrations of T2 results in rapid
production of inhibitor via template T3, which makes the time-
delay over the negative feedback loop too short. Importantly,
once the inhibitor is formed, it should strongly inhibit T1 (low
value of Kd

inhT1) as a fast shutdown of the positive feedback loop
is necessary to generate sustained oscillations. Finally, the
delicate balance between contributions from the positive and
negative feedback loop in the Oligator becomes apparent from
the optimal median value of Kd

α. Sustained oscillations only
appear if oligomer α rapidly dissociates from templates T1 and

T2 (i.e., Kd
α adopts high values). We attribute this to the fact that

rapid dissociation of oligomer α prevents saturation of template
T1, and hence, a fast exponential increase of α is guaranteed. On
the other hand, fast dissociation of α from T2 also contributes
to the increased time-delay over the negative feedback loop. A
typical oscillatory response is depicted in Figure 3C where the
total base-pair concentration is shown as a function of time,
along with the temporal concentration profiles of the individual
oligomers α, β, and inh. We verify that there is a single limit
periodic trajectory in Figure 3D in the [α]-versus-[β]-plane and
that, regardless of the initial condition, the response spirals
toward that same trajectory. Our in silico analysis of the
Oligator CRN is thus able to identify ranges of thermodynamic
parameters and template concentrations that give rise to
oscillatory responses and thus greatly facilitates successful
experimental implementation. Moreover, these results corrob-
orate with experimental findings by Rondelez and co-workers.30

The procedure is repeated to investigate if a PEN
implementation of a type-1 IFFL (Figure 4A) is able to display
adaptation. Adaptation is the ability of a system to respond to a
change in stimulus after which it returns to prestimulus activity
while the stimulus level stays elevated. Sensitivity and precision
are measures for the relative response to change in stimulus and
the relative difference in steady state values, respectively, and
are defined in eq 1 related to the signal in Figure 4B.
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We have chosen the type-1 IFFL because previous work has
shown that this pulse-generating motif can control gene
expression in vivo,48 and adaptation in type-1 IFFL network
motifs is more robust compared to adaptation arising in
NFBLB network motifs in silico.40 Furthermore, alternative
implementations of DNA based IFFL circuits show adaptive
responses of similar quality compared to the circuit shown in
Figure 4A (Supporting Information Text S1); however, the
concentration of output ssDNA is lower. In the type-1 IFFL
circuit considered here, activation occurs on template T1 by
input strand U that is resistant to degradation. Activation of T1
by U initiates production of oligomer α that in turn activates
both T2 and T3. Activation of T3 leads to the production of
output oligomer Y, while activation of T2 leads to the
production of inhibitor inh, which renders T3 inactive. To
explore the phase space of this circuit, simulations were
performed in which the system is first equilibrated and the
response in the concentration of free Y to a doubling of the
concentration of U is evaluated. The response of the network
measured by the concentration of free Y is classified as adaptive
if the sensitivity (S) and precision (P) exceed preset threshold
values, that is, log10(S) > −0.5 and log10(P) > 1 (Figure 4B).
Figure 4C shows box plots that indicate ranges in the
concentration and hybridization constants for which the IFFL
circuit is able to display an adaptive response. Cross-
correlations between the sampled parameters are displayed in
Supporting Information Figure S4. The IFFL circuit displays
adaptive dynamics when the hybridization dissociation
constants of oligomers α and Y to their respective templates
are high compared to the other hybridization constants,
reflecting the fact that fast activation of T2 and T3 ensures
rapid synthesis of free Y. The low affinity of output Y for T3
prevents sequestration of Y by its template, which is critical to
achieve a response with a high sensitivity. In order for the

Figure 3. Design of a biochemical oscillator using the PEN toolbox.
(A) Network topology of the Oligator as implemented by the PEN
toolbox.30 (B) Box plots of parameter points with oscillation. The gray
bars indicate the sampling ranges for each parameter, and the red box
plots correspond to parameter values leading to sustained oscillations.
Notably, the median of template T2 is lower than that of T1 and T3,
indicating that high concentrations of template T2 tend to destroy
oscillatory behavior, because the delay time becomes insufficiently
short. Furthermore, oscillatory behavior is also critically dependent on
strong inhibition of T1. (C) A typical oscillatory response of the
Oligator, showing trajectories of the total dsDNA concentration, and
the individual signal oligomers inh, α, and β. For this system, sampling
resulted in Kd

α = 127 nM, Kd
β = 3.7 nM, Kd

inhT3 = 0.63 nM, Kd
inhT1 = 0.9

nM, [α]0 = 5 nM, [T1] = 16 nM, [T2] = 3 nM, and [T3] = 16 nM. (D)
Trajectories plotted in the [α]-versus-[β] plane. Numerically, there is a
single limit cycle that attracts all trajectories. The red trajectory is the
response shown in C where the amplitudes of the oscillations decrease
toward the limit cycle. The green trajectory results from initial
conditions close to the equilibrium and shows oscillations of increasing
amplitude converging toward the limit cycle.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb500300d | ACS Synth. Biol. 2015, 4, 735−745738



adaptive response to display a high precision, that is, the free
concentration of Y returns to prestimulus levels, inhibition of
T3 by inh must be very strong, which is reflected in low values
of the dissociation constant Kd

inhT3 (and Kd
inhT2). The

concentration of template T3 adopts a high value because the
response in Y must be noticeable even though inhibition is
strong. The heatmap in Figure 4B depicts the probability of
finding a response with a certain sensitivity and precision. An
important observation from this heatmap is that log10(S) does
not exceed the value 0 (or S does not exceed 1), indicating fold
changes in the transient response in Y is unable to exceed fold-
changes in the concentration of input U. The automated circuit

design is able to identify an adaptive responses in the DNA-
based IFFL (Figure 4D), however; the sensitivity of the
network is always lower than one (vide inf ra). Hence, we have
shown using two distinct network topologies that an automated
approach is successful in finding functional dynamical behavior
in DNA-based enzymatic CRNs.

Robustness Analysis and Automated DNA Sequence
Design. In silico design of synthetic biochemical circuits
consists of a performance and a robustness classification
phase.52 In the previous sections, we have classified the
performance of two DNA-based CRNs resulting in parameter
ranges where the desired response can be observed. However,
this procedure does not yield insight in the robustness of the
response, that is, the effect of small perturbations on the
performance of the circuit. We have used the “glocal”
robustness concept as introduced by Wagner et al. to compute
a robustness measure for each dissociation constant for the two
PEN-based circuits (Figures 3A and 4A) and have used this
information in the design of template sequences.45 Because the
number of viable parameter sets resulting in the desired
dynamical behavior is small for both circuits (0.05−0.3%), we
first vastly increased the number of viable parameter sets by a
directed parameter search of the parameter space close to the
viable sets (Supporting Information Text S2, Figure 5A). All
resulting parameter sets are locally perturbed, leading to a
robustness measure for each parameter set. Next, the
dissociation constants of the set with the highest robustness
measure are perturbed individually such that every dissociation
constant in the circuit is associated with an individual
robustness measure between 0 and 1 (Supporting Information
Figures S7 and S8). The robustness measure for each
hybridization dissociation constant is used as a weighting factor
in the automated DNA strand design procedure (Supporting
Information Text S3, Figure 5B). The hybridization Gibbs free
energy values are calculated from the optimal dissociation
constants and are subsequently used as target Gibbs free
energies for automated DNA sequence design. A simulated
annealing approach53 is used to perform the sequence
optimization. In this process, we suggest point mutations in
the DNA strands, calculate the DNA hybridization Gibbs free
energies using NUPACK50,51 and evaluate the value of the
objective function. The objective function is based on the
weighted error between the target and calculated Gibbs free
energy values of DNA hybridizations and contains penalties for
intramolecular hybridization of ssDNA strands and unintended
cross-hybridizations between the various components of each
network topology. Unique DNA sequences are generated using
the criton54 concept introduced by Seeman (Supporting
Information Text S3). Eventually, the Gibbs free energy values
converge toward their respective target values. For the IFFL
motif, this convergence is shown for the duplexes T1·α, T3·Y,
and inh·T3 in Figure 5C. The iteration that displays the
minimum total error corresponds to the sequences of choice for
in vitro characterization. The DNA sequences resulting from the
optimization procedure, with the necessary modifications to
retain functionality of the circuit, are depicted in Table 1.

Unproductive Sequestration of ttRecJ Exonuclease.
During experimental characterization of the PEN toolbox, we
discovered that ttRecJ exonuclease binds strongly to phosphor-
othioate protected ssDNA strands thereby preventing binding
of degradable unprotected ssDNA strands (Figure 6A). We
believe that this binding is the result of strong metal−ligand
interactions between sulfur atoms on the modified DNA

Figure 4. Design of an adaptive biochemical circuit using the PEN
toolbox. (A) Network topology of a PEN-toolbox implementation of a
type-1 incoherent IFFL. Input trigger U is protected from degradation
by exonuclease through multiple phosphorothioate modifications at
the 5′ end of its backbone. To characterize the effect of these
backbone modifications on the kinetics of DNA polymerase when U
acts as the trigger on T1, we experimentally determined Vmax,polU and
KM,polU and used these in the model (Supporting Information Text S4,
Figure S13). (B) Heatmap of the probability of finding a certain
combination of sensitivity and precision values, along with the
definitions of sensitivity and precision. The adaptive regime (log(S) >
−0.5 and log10(P) > 1) is highlighted by a red dashed box. Notably,
the probability of finding an adaptive response through sampling is low
(hit rate is 0.05%). In the signal, the characteristic measures that
determine sensitivity and precision (eq 1) are displayed. (C) Box plots
as a result of parameter sampling of the IFFL motif. The gray bars
indicate the sampling ranges for each parameter, and the red box plots
correspond to parameter values leading to adaptation. The analysis
shows that the concentrations of input oligomer U and templates T1,
T2, and T3 can be tuned such that the network displays an adaptive
response in the concentration of free Y. The dissociation constants for
oligomers α and Y are near their upper sampling bounds, which is
explained by the need for fast activation of T2 and T3 ensuring rapid
synthesis of output Y. The low affinity of Y for T3 prevents
sequestration of Y by its template. In order to overcome the transient
increase in Y, that is, matching the steady state value of Y after the
transient increase to the previous steady state as closely as possible and
thus maximizing the precision of the response, inhibition of T3 must be
very strong. This explains the low values found for dissociation
constant Kd

inhT3 (and hence also Kd
inhT2). The concentration of T3 is

high because the response in Y must be noticeable when inhibition is
strong. (D) Adaptation as observed in the concentration of oligomer Y
in its free form. The parameters corresponding to this response are Kd

U

= 14.6 × 103 nM, Kd
α = 1.8 × 103 nM, Kd

inhT2 = 0.037 nM, Kd
Y = 5.8 ×

103 nM, Kd
inhT3 = 0.042 nM, [U]0 = 4 nM, [T1] = 24 nM, [T2] = 12

nM, and [T3] = 95 nM.
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backbone and Mn2+ or Mg2+ sites present in the exonuclease
binding pocket.55 This unproductive sequestration can result in
unintentional cross-coupling between network components,
and therefore, the dissociation constant (KI) characterizing this
binding event was quantified. Table 2 displays the dissociation
constants of the protected oligomers T1 and U as determined at
42 °C in master mix (Supporting Information Text S4). We
find that the dissociation constant characterizing the com-

petitive inhibition of exonuclease by protected ssDNA strands
depends on the length of the DNA strand and find a higher
affinity of ttRecJ for shorter protected strands (Supporting
Information Figure S15).
Next, we investigated how unproductive sequestration of the

degradation machinery by protected ssDNA strands influences
the adaptive response of the DNA-based IFFL. Previous reports
have quantified how resource competition coupled with
enzyme saturation in genetic networks can lead to ultrasensitive
responses,56 allows for predictable tuning of bistable
switches57,58 and presents a versatile mechanism to synchronize
and tune oscillating circuits.59−62 However, the influence of
resource competition on adaptation dynamics has, to the best
of our knowledge, not been reported. We expanded the ODE
model by explicitly taking into account unproductive binding of
the ttRecJ exonuclease to protected ssDNA strands and
assessed the ability of the improved model to display
adaptation. In contrast to the model in which sequestration
of exonuclease by protected ssDNA strands is neglected
(Figure 4B), the response heatmap (Figure 6B) of the
improved model shows that the circuit is capable of adaptive
responses characterized by high sensitivity values (log10(S) > 0)
while maintaining precision (log10(P) > 1), that is, output
signals that return to prestimulus activity show a transient
response exhibiting a sensitivity value larger than one.
Mechanisms that lead to signal amplification in adaptation
dynamics63 of biological circuits include covalent modifications
of receptors64 by means of zeroth order ultrasensitivity40,65 and

Figure 5. Parameter robustness analysis and automated DNA sequence design. (A) Schematic representation of the parameter robustness analysis
procedure. From the sampling, accepted parameter sets that generate the desired dynamic network behavior are subjected to a directed parameter
search vastly increasing the number of viable sets.45 Once this procedure has converged, all resulting sets are locally perturbed, resulting in a
robustness measure for each parameter set. The most robust parameter set is then taken and used as a target for DNA sequence design. (B)
Simulated annealing procedure for automated DNA sequence design.49 The parameters resulting from the robustness analysis are used to calculate
the optimal Gibbs free energy of DNA hybridization, and these are subsequently used as target Gibbs free energies for automated DNA sequence
design. DNA hybridization Gibbs free energies are calculated by NUPACK50,51 and should match the targets as closely as possible. Next to
optimization of the Gibbs free energies of hybridization, self-complementarity and unwanted inter- and intramolecular hybridization is penalized.
Therefore, this approach provides optimal DNA hybridization energies while minimizing circuit leakage due to undesired enzymatic reactions. (C)
Gibbs free energy convergence by means of simulated annealing to the target values as determined for the IFFL circuit network to show adaptation,
shown for the duplexes T1·α, T3·Y, and inh·T3. A million point mutations are performed, and the iteration showing the lowest total error corresponds
to the DNA sequences that can be used to experimentally implement the network.

Table 1. DNA Sequences for the IFFL Circuit Resulting
from the Automated Designa

oligomer sequence

T1 A*T*T*AGACTCACAAACGACTCCTA
T1* A*T*T*AGACUCACAAACGACTCCTA
T2 A*T*C*CCAACATTAGACTATTAGACTCAC
T3 A*A*A*TACCCAACATTAGACTCAC
U T*A*G*GAGTCGTTT
α GTGAGTCTAAT
Y GTTGGGTATTT
inh AGTCTAATGTTGGGAT

aMarked bases (*) are protected from degradation by exonuclease
through phosphorothioate modifications on their 5′ backbones. Italic
bases belong to the nickase recognition sites, bold bases belong to the
imposed 2-base mismatch of the inhibitor strand on T3. Sequences are
depicted 5′ → 3′. The nickase recognition site of template T1 close to
the phosphorothioate modifications is mutated (T1*, thymine →
uracil) in order to obtain a comparable nicking rate with respect to
nickase recognition sites located at the 3′ end.31
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receptor clustering.66 Importantly, none of these mechanisms
plays a role in the DNA-based IFFL circuit. Figure 6C shows a
response of the improved model exhibiting amplified exact
adaptation (log10(S) > 0 and log10(P) > 1) alongside a response
of the original circuit with the same parameters as in Figure 4D.

Figure 6D displays the effect of the concentration of
exonuclease on the quality of the response. Low availability
of exonuclease leads to accumulation of ssDNA strands,
saturating the templates, thus reducing the relative responses
of the system. As the exonuclease concentration increases, the
response time and steady state concentration of Y decrease,
while the peak value stays approximately constant, thus
increasing sensitivity. The concentration of exonuclease reaches
an optimal point at which the system displays its optimal
response, after which further increase decreases the overall
quality of the response because ssDNA strands are degraded
too fast. Near the optimal exonuclease concentration, the
nonlinearity introduced by high affinity of the enzyme for
protected ssDNA allow these strands to function as a buffer for
enzymatic activity, which is necessary for the circuit to exhibit S
> 1. Moreover, the parameter regimes in which exact adaptation
(log10(S) > −0.5 and log10(P) > 1) occurs are significantly
broadened due to unproductive exonuclease sequestration
(Supporting Information Figure S16), while the robustness
measures of the parameters increase (Supporting Information
Figure S17). From this, we can conclude that unproductive
sequestration of the degradation machinery of the DNA-based
IFFL circuit appears to greatly improve the quality and
robustness of the adaptive response.
The origin of this behavior can be unraveled through

modeling. The ODE models presented earlier are kinetically
detailed and provide stringent criteria for DNA sequence
design, but they are too complex to enable a conceptual
understanding of the nonlinear dynamics underlying the
adaptation mechanism. To that end, we constructed two toy
models lacking detailed kinetics but allowing one to explore and
rationalize qualitative behavior. The first toy model (TMI) is a
compact representation of the original design of the IFFL
circuit, whereas the second one (TMII) additionally includes
additional resource competition by unproductive sequestration
of the protected, nondegradable input strand by exonuclease. It
should be noted that the three-node networks analyzed by
Tang and co-workers40contrary to our three-node circuits
are based on reactions that describe enzymatic conversions
from a conserved pool, that is, each node of the circuit relates
to a constant total concentration of enzyme that is
interconverted between an active and an inactive form. The
simplified ODE models analyzed in this paper are fundamen-
tally different as the interacting species α, inh, and Y are
constantly produced (by polymerase from dNTPs) and
degraded (by exonuclease) over time. TMI is described in
eqs 2−4, where the production of the activator (α), inhibitor
(inh), and output (Y) is modeled by Michaelis−Menten
kinetics and their degradation by first-order kinetics (vide
inf ra).31,34
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Figure 6. Unproductive sequestration of exonuclease. (A) Mechanism:
exonuclease (purple) binds to ssDNA strands (green), which are
subsequently degraded. However, the degradation of unprotected
ssDNA oligomers is inhibited by binding of phosphorothioate
protected (yellow circles) ssDNA oligomers (red) competing for the
active site of the exonuclease. (B) Heatmap of the probability of
finding a certain combination of sensitivity and precision values (107

samples). The adaptive regime (log10(S) > −0.5 and log10(P) > 1) is
highlighted by a red dashed box. Notably, responses that exhibit
sensitivity values larger than 1 (log10(S) > 0) while maintaining
precision are found. (C) Comparison of an adaptive response without
(dashed lines, Figure 4D) and with (solid lines) competitive inhibition
of exonuclease by phosphorothioate protected strands. Competitive
inhibition of the degradation machinery results in an amplified
adaptive response characterized by sensitivity larger than 1. The
parameters corresponding to this response are Kd

U = 14.6 nM, Kd
α = 1.8

× 103 nM, Kd
inhT2 = 0.037 nM, Kd

Y = 5.8 × 103 nM, Kd
inhT3 = 0.042 nM,

[U]0 = 4 nM, [T1] = 24 nM, [T2] = 12 nM, [T3] = 95 nM, and [exoN]
≈ 50 nM. The lower steady state for the improved model is explained
by less availability of DNA templates due to unproductive
sequestration. (D) Effect of the exonuclease concentration in the
model that incorporates competitive inhibition of exonuclease with the
same parameters as in C. A concentration of [exoN] ≈ 50 nM exhibits
the best response. Very high exonuclease concentrations lead to
extremely low ssDNA concentrations and no significant response in Y.

Table 2. Dissociation Constants Quantifying Unproductive
Binding of Protected ssDNA Strands to Exonuclease ttRecJa

oligonucleotide KI (nM)

U (12 bases) 1.38 ± 0.02
T1 (23 bases) 4.72 ± 0.01

aDissociation constants were determined at 42 °C in master mix using
three different sequences of oligomer T1 and U carrying three
phosphorothioate modifications (Supporting Information Text S4,
Figure S15). The table depicts the mean dissociation constants
obtained by analysis of several variants of oligomer U and T1. The
Vmax,exoN and KM,exoNlong that describe degradation of oligomer inh in
absence of protected competitors is obtained from nonlinear least
square analysis of the data using the integrated Michaelis−Menten
equation without competition (Vmax,exoN = 169.97 ± 1.80 nM min−1

and KM,exoNlong = 529.76 ± 17.43 nM).
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In these equations, U represents the total concentration of
input strand, whereas α, inh, and Y are the concentrations of the
activating, inhibiting, and output species in the IFFL circuit. T1,
T2, and T3 are the concentrations of the template strands, while
the parameters KU, Kα, and Kinh are Michaelis−Menten
constantsroughly equal to the hybridization dissociation
constants Kd

U, Kd
α, and Kd

inhT2 ≈ Kd
inhT3 in the large ODE model,

respectively. The rate constants kα, kinh, and kY are catalytic
rates depending nontrivially on nickase and polymerase enzyme
kinetics, while D represents the first-order degradation rate
constant. In principle, competition between the network
constituents for exonuclease should result in nonlinear
degradation terms. However, the first-order approximation
remains valid, as the individual concentration of each of these
species is well below the Michaelis−Menten constant of
exonuclease for unprotected strands (KM,exoN ∼ 150−440 nM).
Inhibition of T3 by inh is taken into account by assuming that
this species acts as a competitive inhibitor cf. eq 4.
It can be readily shown that TMI exhibits high precision but

the sensitivity of its adaptive response is below one (Supporting
Information Text S5). This is in excellent agreement with our
earlier observation that the DNA-based enzymatic IFFL circuit
fails to amplify transient changes in its input. Intuitively, the
output dynamics of TMI are characterized by the total
concentration of input strand. For low total concentrations of
input, the enzyme kinetics in eqs 2−4 operate in their linear
regime, whereas high concentrations saturate it. The inhibitory
effect of inh on Y is negligible in the former case, resulting in a
steady state value Y̅ of the output that grows roughly
proportionally with U; that is, the network is imprecise. In
the latter case, inh inhibits the output successfully, making Y̅
largely insensitive to changes in U, that is, the network exhibits
high precision. This becomes obvious from the explicit formula
for the steady state (eq 5)

̅ = ̅
+

+ ′ + ″
Y Y

U KU
U K U Kmax

2

2 (5)

which yields the approximations ̅ ≈ ̅
″Y UKY

K
max and Y̅ ≈ Y̅max for

low and high concentrations U, respectively. The expressions
for the constants K, K′, and K″are given in Supporting
Information Text S5. Summarizing, while TMI is able to
generate adaptive responses with high precision, the sensitivity
of the response is low (S < 1).
The second toy model, TMII, is a modification of TMI

incorporating the observation that protected species are able to
unproductively bind exonuclease (exoN), which results in
enzyme-limited competition. Here, we only consider the
binding between input strands and exonuclease, neglecting
binding of protected templates. This is in agreement with TMI,
where changes in template concentrations were unaccounted.
Specifically, we incorporate unproductive sequestration by
introducing competition between exonuclease and template T1
for protected input strand (mechanism is depicted in eq 6).
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TMII uses the free concentration of input strand, that is, Ufree =
U −U·exoN − U·T1, as a competitive inhibitor in the

degradation terms. Amplification of α by T1 is also initiated
by the free form of input ssDNA; hence, TMII is described as
in eqs 7−9. We again note the difference to the simplified ODE
models analyzed by Tang and colleagues,40 as in TMII the
input explicitly affects network dynamics by controlling the
degradation rates due to sequestration of exonuclease activity.
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In these equations, Vmax,exoN is the maximum degradation rate
and KM,exoN is the Michaelis−Menten constant of exonuclease,
while KI,U is the dissociation constant of protected U
unproductively binding to exonuclease. Sequestration is
assumed to occur instantaneously; that is, Ufree is obtained at
each time-step by solving the algebraic equations corresponding
to the steady state of eq 6.
TMII displays an adaptive response with high precision

under the same conditions as TMI. The mechanism enabling
adaptation is similar to that in TMI, with the steady state values
of the model components behaving differently for input strand
concentration in excess of U > exoN + T1 (Figure 7B). In
contrast to TMI, however, TMII is capable of generating
adaptive responses with high sensitivity for input concen-
trations around U ≈ exoN + T1 (Figure 7A). Amplified exact
adaptation in TMII is driven by unproductive binding of input
strand to exonuclease, as a result of large relative decreases in
the degradation rates for U ≈ exoN + T1 (Figure 7C, bottom
graph). To investigate this mechanism in detail, we first outline
two operational modes for the circuit specified by the total
concentration U relative to the summed concentration exoN +
T1. First, for concentrations U < exoN +T1, most of the input is
bound to exonuclease or template T1 (Figure 7B), while the
remainder drives the production of α, inh, and Y. In this mode,
the steady state Y̅ increases with the concentration U, similar to
the linear regime in TMI. When U > exoN + T1, exonuclease
and template T1 are nearly saturated and Ufree ≈ U − exoN −
T1. In this operational mode, the production terms are also
saturated, and the inhibitory connection controls Y̅ effectively
(Supporting Information Text S5). In the regime intermediate
to those modes, U ≈ exoN + T1, exonuclease and template T1
approach saturation allowing Ufree ≪ U to increase sharply with
U (Figure 7B, bottom panel). This increase in Ufree increases
production rates and decreases degradation rates by unpro-
ductive sequestration of exonuclease, thereby elevating α̅, inh,
and Y̅ sharply (Figure 7B, top two graphs). Precision increases
rapidly in this transitory regime (Figure 7C, top panel), as inh
arrests further production of Y̅. Concurrently, changes in U
affect Ufree commensurately (δUfree ≈ δU), but relative changes
δUfree/Ufree ≈ (U/Ufree)(δU/U) are starkly amplified by the
factor (U/Ufree) ≫ 1 (Figure 7C, bottom graph). Such relative
changes in Ufree instantly affect the degradation rate, while the
production machinery of Y responds much slower. The net
result is a transient imbalance in the production and
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degradation of output, which drives a substantial overshoot in
the response of the circuit signaling high sensitivity values
(Figure 7A).
Conclusion. In this paper, we have shown the successful

automated design of CRNs constructed from the PEN toolbox.
An important asset of this approach is that it couples a directed
exploration of the phase space and calculated robustness
measures of parameters to a physical implementation of the
desired circuit that is optimized to account for unexpected
perturbations. Indeed, this coupling ensures that the expected
functionality of the circuit is preserved after optimization of the
DNA sequences. The automated design methodology has
shown to successfully reproduce the Oligator system and is
applied to the design of a new type of PEN-based circuit, the
IFFL. Although the experimental implementation of the IFFL
circuit may seem straightforward at this point, initial scoping
experiments have revealed that the use of fluorescent probes
that transiently sequester ssDNA output Y leads to strong
retroactivity effects that negatively influence adaptation
dynamics making characterization of the circuit dynamics
extremely challenging.67 Currently, we are working on various
strategies to attenuate retroactivity effects in PEN-based
circuits. In the future, the design procedure will be facilitated
by the incorporation of automated generation of sets of ODEs,
greatly speeding up the design process and reducing the risk of

error-prone derivation of large sets of ODEs by hand. While the
methodology is designed for reaction networks based on the
PEN toolbox, similar approaches will alleviate the design of
CRNs based on different building blocks, for example, those
based on genelets or in vitro transcription−translation
machinery, and the design of CRNs in microfluidic reactors.
Next to the automated design of PEN-based circuits, we have
characterized the unproductive sequestration of the degradation
machinery of the PEN toolbox. The noncanonical cross-
coupling between network components results in strong
nonlinearities in their degradation, which can either suppress
or promote target dynamic behavior.60 For the case of the IFFL
circuit, we have shown how noncanonical cross-coupling by
enzyme-limited competition provides a novel amplification
mechanism and broadens the parameter range in which the
network displays adaptation. The results in this paper will aid in
the development of integrated biochemical circuits that can
probe their chemical environment, process chemical signals,
make decisions, and take action at the molecular level.

■ METHODS

Integration of ODEs. All ODE computations are
performed with MATLAB R2010a. Differential equations are
numerically integrated with compiled MEX files using
numerical integrators from the SUNDIALS CVode package.68

The relative and absolute tolerances are always set to 10−11, and
a solution is required to be found within 10 s. Latin Hypercube
Sampling is required to generate 107 parameter sets and is
performed with scripts from Budiman Minasny (2004). See
Supporting Information Texts S1 and S2 for more details.

DNA Sequence Design. A parser written in Python
performs a simulated annealing procedure using point
mutations in the DNA strands iteratively to design optimal
DNA sequences. The parser is initiated by the user and
communicates with the NUPACK executable complexes to
obtain all relevant information needed to evaluate the binding
energies of the DNA complexes, while the parser contains
functions to evaluate DNA strand integrity based on the criton
concept. Operational details of the parser and settings for
NUPACK are described in Supporting Information Text S3.

Experimental Characterization of Polymerase and
Exonuclease. Oligonucleotides were obtained from Integrated
DNA Technologies (IDTDNA) and were purified using high
performance liquid chromatography (HPLC). Three phosphor-
othioate backbone modifications at the 5′ end prevent
degradation of templates and input primer U of the enzymatic
DNA based network. Furthermore, templates were ordered
with a phosphate modification at their 3′ end to prevent circuit
leakage. Concentrations of DNA were verified using NanoDrop
Spectrophotometer ND-100.
Enzymatic degradation of nonprotected primers is induced

by ttRecJ, a thermophilic equivalent of the 5′ → 3′ processive
exonuclease RecJ enzyme from Thermus thermophilus. The
batch was diluted in diluent D (NEB) to form a stock solution
with a concentration of 2.5 μM.
DNA polymerase was obtained from NEB. The working

stock of Bst. polymerase was prepared by dissolving the original
stock of 8000 U mL−1 in diluent A complemented with 0.1%
Triton X-100 to form a stock of 256 U mL−1 (36.2 nM).
Full experimental protocols and analyses are given in

Supporting Information Text S4.

Figure 7. Analysis of TMII. (A) Amplified exact adaptation in TMII as
a result of increasing the total concentration of input ssDNA by 20%.
Parameter values for this simulation are KU = 0.2 nM, Kα = 1250 nM,
Kinh = 0.001 nM, KI,U = 1.4 nM, KM,exoN = 440 nM, kαT1,tot = 2.5 nM
min−1, kinhT2 = 8 nM min−1, kYT3 = 106.5 nM min−1, and Vmax,exon =
300 nM min−1. (B) Steady state values of the three states in the model,
that is, α̅, inh, and Y̅, as a function of the total concentration of input
strand, U (top two panels); the effect on both Ufree and U·T1 of
unproductive binding of input strand U to template T1 and
exonuclease (bottom panel). The dashed green lines represent the
summed concentration exoN + T1. (C) The top graph shows the
logarithm of precision (blue) and sensitivity (red) as a function of the
total concentration of input strand, U, with the amplified exact
adaptation regime highlighted in yellow (log10(S) > 0 and log10(P) >
1). The bottom graph displays the relative change in inverse
degradation rate (Supporting Information Text S5); degradation
slows down when this measure becomes large, therefore correlating
very well with sensitivity.
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